If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-54x+12=0
a = 24; b = -54; c = +12;
Δ = b2-4ac
Δ = -542-4·24·12
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-42}{2*24}=\frac{12}{48} =1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+42}{2*24}=\frac{96}{48} =2 $
| 4(5y-9)-24y+70=4(-21y) | | (3/x-4)=(5/2x-3) | | –7.5x2+4.8x–0.3=2.5x2+10.02–10x2 | | 18x-(2x-3)=99 | | t–26=–21 | | 5(1x+8)-40=25 | | 4x+5=-4x | | 4+2/3x=-5 | | 6(y+4)=9y+30 | | 14-(2x+5)=-2x+9= | | 5u-3=27 | | U=4v+1 | | 3-2(x+1)=2(1-x)+2 | | 6x^+15x-36=0 | | (x+5)2=5x+29+5x | | 3+2y=24=14-3y | | 3x-88=x/3 | | 3v-5=10 | | -11x=101 | | x/5=1=7 | | 4x+5=-x1 | | 5(6x+1)-35=150 | | 9+n=–2 | | -x^2+4=9 | | 10=-x+(3x+4) | | 50=9r−4 | | x+16=160 | | 5(7x-5)+15=165 | | y=5/3-9 | | 4x+108=3x+111 | | (4r-2)(4r-4)=0 | | 5(x-5)+15=165 |